Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570028

RESUMO

Angiosarcoma is an aggressive soft-tissue sarcoma with a poor prognosis. Chemotherapy for this cancer typically employs paclitaxel, a taxane (genotoxic drug), although it has a limited effect owing to chemoresistance to prolonged treatment. In this study, we examine an alternative angiosarcoma treatment approach that combines chemotherapeutic and senolytic agents. We find that the chemotherapeutic drugs cisplatin and paclitaxel efficiently induce senescence in angiosarcoma cells. Subsequent treatment with the senolytic agent ABT-263 eliminates senescent cells by activating the apoptotic pathway. In addition, expression analysis indicates that senescence-associated secretory phenotype genes are activated in senescent angiosarcoma cells and that ABT-263 treatment downregulates IFN-I pathway genes in senescent cells. Moreover, we show that cisplatin treatment alone requires high doses to remove angiosarcoma cells. In contrast, lower doses of cisplatin are sufficient to induce senescence, followed by the elimination of senescent cells by the senolytic treatment. This study sheds light on a potential therapeutic strategy against angiosarcoma by combining a relatively low dose of cisplatin with the ABT-263 senolytic agent, which can help ease the deleterious side effects of chemotherapy.

2.
PLoS Pathog ; 19(1): e1011078, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696451

RESUMO

Distinct viral gene expression characterizes Epstein-Barr virus (EBV) infection in EBV-producing marmoset B-cell (B95-8) and EBV-associated gastric carcinoma (SNU719) cell lines. CCCTC-binding factor (CTCF) is a structural chromatin factor that coordinates chromatin interactions in the EBV genome. Chromatin immunoprecipitation followed by sequencing against CTCF revealed 16 CTCF binding sites in the B95-8 and SNU719 EBV genomes. The biological function of one CTCF binding site (S13 locus) located on the BamHI A right transcript (BART) miRNA promoter was elucidated experimentally. Microscale thermophoresis assay showed that CTCF binds more readily to the stable form than the mutant form of the S13 locus. EBV BART miRNA clusters encode 22 miRNAs, whose roles are implicated in EBV-related cancer pathogenesis. The B95-8 EBV genome lacks a 11.8-kb EcoRI C fragment, whereas the SNU719 EBV genome is full-length. ChIP-PCR assay revealed that CTCF, RNA polymerase II, H3K4me3 histone, and H3K9me3 histone were more enriched at S13 and S16 (167-kb) loci in B95-8 than in the SNU719 EBV genome. 4C-Seq and 3C-PCR assays using B95-8 and SNU719 cells showed that the S13 locus was associated with overall EBV genomic loci including 3-kb and 167-kb region in both EBV genomes. We generated mutations in the S13 locus in bacmids with or without the 11.8-kb BART transcript unit (BART(+/-)). The S13 mutation upregulated BART miRNA expression, weakened EBV latency, and reduced EBV infectivity in the presence of EcoRI C fragment. Another 3C-PCR assay using four types of BART(+/-)·S13(wild-type(Wt)/mutant(Mt)) HEK293-EBV cells revealed that the S13 mutation decreased DNA associations between the 167-kb region and 3-kb in the EBV genome. Based on these results, CTCF bound to the S13 locus along with the 11.8-kb EcoRI C fragment is suggested to form an EBV 3-dimensional DNA loop for coordinated EBV BART miRNA expression and infectivity.


Assuntos
Infecções por Vírus Epstein-Barr , Infecção Latente , MicroRNAs , Humanos , Infecções por Vírus Epstein-Barr/genética , Fator de Ligação a CCCTC/genética , Herpesvirus Humano 4/genética , Histonas/genética , Células HEK293 , MicroRNAs/genética , Cromatina , Sítios de Ligação
3.
Nat Commun ; 13(1): 187, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039491

RESUMO

Epstein-Barr virus (EBV) persists in human B-cells by maintaining its chromatinized episomes within the nucleus. We have previously shown that cellular factor Poly [ADP-ribose] polymerase 1 (PARP1) binds the EBV genome, stabilizes CTCF binding at specific loci, and that PARP1 enzymatic activity correlates with maintaining a transcriptionally active latency program. To better understand PARP1's role in regulating EBV latency, here we functionally characterize the effect of PARP enzymatic inhibition on episomal structure through in situ HiC mapping, generating a complete 3D structure of the EBV genome. We also map intragenomic contact changes after PARP inhibition to global binding of chromatin looping factors CTCF and cohesin across the EBV genome. We find that PARP inhibition leads to fewer total unique intragenomic interactions within the EBV episome, yet new chromatin loops distinct from the untreated episome are also formed. This study also illustrates that PARP inhibition alters gene expression at the regions where chromatin looping is most effected. We observe that PARP1 inhibition does not alter cohesin binding sites but does increase its frequency of binding at those sites. Taken together, these findings demonstrate that PARP has an essential role in regulating global EBV chromatin structure and latent gene expression.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/química , Proteínas Cromossômicas não Histona/genética , Mapeamento Cromossômico/métodos , Genoma Viral , Herpesvirus Humano 4/genética , Poli(ADP-Ribose) Polimerase-1/genética , Linfócitos B/patologia , Linfócitos B/virologia , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Regulação da Expressão Gênica , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/crescimento & desenvolvimento , Herpesvirus Humano 4/imunologia , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Ftalazinas/farmacologia , Piperazinas/farmacologia , Plasmídeos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Transdução de Sinais , Transcrição Gênica , Latência Viral/genética
4.
Nat Commun ; 11(1): 877, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054837

RESUMO

Epstein-Barr virus (EBV) genomes persist in latently infected cells as extrachromosomal episomes that attach to host chromosomes through the tethering functions of EBNA1, a viral encoded sequence-specific DNA binding protein. Here we employ circular chromosome conformation capture (4C) analysis to identify genome-wide associations between EBV episomes and host chromosomes. We find that EBV episomes in Burkitt's lymphoma cells preferentially associate with cellular genomic sites containing EBNA1 binding sites enriched with B-cell factors EBF1 and RBP-jK, the repressive histone mark H3K9me3, and AT-rich flanking sequence. These attachment sites correspond to transcriptionally silenced genes with GO enrichment for neuronal function and protein kinase A pathways. Depletion of EBNA1 leads to a transcriptional de-repression of silenced genes and reduction in H3K9me3. EBV attachment sites in lymphoblastoid cells with different latency type show different correlations, suggesting that host chromosome attachment sites are functionally linked to latency type gene expression programs.


Assuntos
Sítios de Ligação Microbiológicos/genética , Sítios de Ligação Microbiológicos/fisiologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Linfoma de Burkitt/genética , Linfoma de Burkitt/virologia , Linhagem Celular Tumoral , Cromossomos Humanos/genética , Cromossomos Humanos/virologia , Epigênese Genética , Antígenos Nucleares do Vírus Epstein-Barr/fisiologia , Herpesvirus Humano 4/patogenicidade , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Modelos Biológicos , Plasmídeos/genética , Latência Viral/genética , Latência Viral/fisiologia
5.
Nat Commun ; 10(1): 5688, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831736

RESUMO

Senescence is induced by various stimuli such as oncogene expression and telomere shortening, referred to as oncogene-induced senescence (OIS) and replicative senescence (RS), respectively, and accompanied by global transcriptional alterations and 3D genome reorganization. Here, we demonstrate that the human condensin II complex participates in senescence via gene regulation and reorganization of euchromatic A and heterochromatic B compartments. Both OIS and RS are accompanied by A-to-B and B-to-A compartmental transitions, the latter of which occur more frequently and are undergone by 14% (430 Mb) of the human genome. Mechanistically, condensin is enriched in A compartments and implicated in B-to-A transitions. The full activation of senescence genes (SASP genes and p53 targets) requires condensin; its depletion impairs senescence markers. This study describes that condensin reinforces euchromatic A compartments and promotes B-to-A transitions, both of which are coupled to optimal expression of senescence genes, thereby allowing condensin to contribute to senescent processes.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Senescência Celular/genética , Senescência Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/farmacologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Cromatina , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genômica , Humanos , Proteínas Nucleares/genética , Oncogenes , Regiões Promotoras Genéticas , Encurtamento do Telômero , Proteína Supressora de Tumor p53/genética
6.
Sci Adv ; 5(5): eaaw5294, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31131328

RESUMO

ARID1A, a subunit of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex, localizes to both promoters and enhancers to influence transcription. However, the role of ARID1A in higher-order spatial chromosome partitioning and genome organization is unknown. Here, we show that ARID1A spatially partitions interphase chromosomes and regulates higher-order genome organization. The SWI/SNF complex interacts with condensin II, and they display significant colocalizations at enhancers. ARID1A knockout drives the redistribution of condensin II preferentially at enhancers, which positively correlates with changes in transcription. ARID1A and condensin II contribute to transcriptionally inactive B-compartment formation, while ARID1A weakens the border strength of topologically associated domains. Condensin II redistribution induced by ARID1A knockout positively correlates with chromosome sizes, which negatively correlates with interchromosomal interactions. ARID1A loss increases the trans interactions of small chromosomes, which was validated by three-dimensional interphase chromosome painting. These results demonstrate that ARID1A is important for large-scale genome folding and spatially partitions interphase chromosomes.


Assuntos
Cromossomos/ultraestrutura , Proteínas de Ligação a DNA/fisiologia , Interfase/genética , Fatores de Transcrição/fisiologia , Adenosina Trifosfatases/química , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/química , Análise por Conglomerados , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Humanos , Complexos Multiproteicos/química , Regiões Promotoras Genéticas , Ligação Proteica , RNA-Seq , Serina Endopeptidases/química , Fatores de Transcrição/genética
7.
Nat Struct Mol Biol ; 24(11): 965-976, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28991264

RESUMO

Eukaryotic genomes are highly ordered through various mechanisms, including topologically associating domain (TAD) organization. We employed an in situ Hi-C approach to follow the 3D organization of the fission yeast genome during the cell cycle. We demonstrate that during mitosis, large domains of 300 kb-1 Mb are formed by condensin. This mitotic domain organization does not suddenly dissolve, but gradually diminishes until the next mitosis. By contrast, small domains of 30-40 kb that are formed by cohesin are relatively stable across the cell cycle. Condensin and cohesin mediate long- and short-range contacts, respectively, by bridging their binding sites, thereby forming the large and small domains. These domains are inversely regulated during the cell cycle but assemble independently. Our study describes the chromosomal oscillation between the formation and decay phases of the large and small domains, and we predict that the condensin-mediated domains serve as chromosomal compaction units.


Assuntos
Cromossomos Fúngicos/metabolismo , Cromossomos Fúngicos/ultraestrutura , Genoma Fúngico , Mitose , Schizosaccharomyces/citologia , Schizosaccharomyces/fisiologia , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo
8.
Nat Genet ; 48(10): 1242-52, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548313

RESUMO

It is becoming clear that structural-maintenance-of-chromosomes (SMC) complexes such as condensin and cohesin are involved in three-dimensional genome organization, yet their exact roles in functional organization remain unclear. We used chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) to comprehensively identify genome-wide associations mediated by condensin and cohesin in fission yeast. We found that although cohesin and condensin often bind to the same loci, they direct different association networks and generate small and larger chromatin domains, respectively. Cohesin mediates associations between loci positioned within 100 kb of each other; condensin can drive longer-range associations. Moreover, condensin, but not cohesin, connects cell cycle-regulated genes bound by mitotic transcription factors. This study describes the different functions of condensin and cohesin in genome organization and how specific transcription factors function in condensin loading, cell cycle-dependent genome organization and mitotic chromosome organization to support faithful chromosome segregation.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos Fúngicos , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição GATA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Genes Fúngicos , Genes cdc , Mitose , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Domínios Proteicos , Schizosaccharomyces/metabolismo
9.
PLoS Genet ; 12(3): e1005943, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26990647

RESUMO

Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1(Timeless), a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1(Timeless) in regulation of telomere stability in cancer cells.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Instabilidade de Microssatélites , Sequências Repetitivas de Ácido Nucleico/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ligação a Telômeros/genética , Replicação do DNA/genética , Instabilidade Genômica , Heterocromatina/genética , Humanos , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Schizosaccharomyces/genética , Telômero/genética , Homeostase do Telômero , Encurtamento do Telômero/genética
10.
Mol Cell ; 59(5): 755-67, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26257282

RESUMO

Genome/chromosome organization is highly ordered and controls various nuclear events, although the molecular mechanisms underlying the functional organization remain largely unknown. Here, we show that the TATA box-binding protein (TBP) interacts with the Cnd2 kleisin subunit of condensin to mediate interphase and mitotic chromosomal organization in fission yeast. TBP recruits condensin onto RNA polymerase III-transcribed (Pol III) genes and highly transcribed Pol II genes; condensin in turn associates these genes with centromeres. Inhibition of the Cnd2-TBP interaction disrupts condensin localization across the genome and the proper assembly of mitotic chromosomes, leading to severe defects in chromosome segregation and eventually causing cellular lethality. We propose that the Cnd2-TBP interaction coordinates transcription with chromosomal architecture by linking dispersed gene loci with centromeres. This chromosome arrangement can contribute to the efficient transmission of physical force at the kinetochore to chromosomal arms, thereby supporting the fidelity of chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/química , Centrômero/genética , Centrômero/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Fúngicos , Mitose , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/química , Proteína de Ligação a TATA-Box/química
11.
J Cell Sci ; 126(Pt 22): 5271-83, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23986481

RESUMO

Dispersed genetic elements, such as retrotransposons and Pol-III-transcribed genes, including tRNA and 5S rRNA, cluster and associate with centromeres in fission yeast through the function of condensin. However, the dynamics of these condensin-mediated genomic associations remains unknown. We have examined the 3D motions of genomic loci including the centromere, telomere, rDNA repeat locus, and the loci carrying Pol-III-transcribed genes or long-terminal repeat (LTR) retrotransposons in live cells at as short as 1.5-second intervals. Treatment with carbendazim (CBZ), a microtubule-destabilizing agent, not only prevents centromeric motion, but also reduces the mobility of the other genomic loci during interphase. Further analyses demonstrate that condensin-mediated associations between centromeres and the genomic loci are clonal, infrequent and transient. However, when associated, centromeres and the genomic loci migrate together in a coordinated fashion. In addition, a condensin mutation that disrupts associations between centromeres and the genomic loci results in a concomitant decrease in the mobility of the loci. Our study suggests that highly mobile centromeres pulled by microtubules in cytoplasm serve as 'genome mobility elements' by facilitating physical relocations of associating genomic regions.


Assuntos
Centrômero/genética , Interfase/genética , Mitose/genética , Schizosaccharomyces/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/ultraestrutura , Benzimidazóis/farmacologia , Carbamatos/farmacologia , DNA Ribossômico/genética , DNA Ribossômico/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Genoma Fúngico , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Mitose/efeitos dos fármacos , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , RNA Ribossômico 5S/genética , RNA Ribossômico 5S/ultraestrutura , RNA de Transferência/genética , RNA de Transferência/ultraestrutura , Retroelementos/genética , Schizosaccharomyces/citologia , Telômero/genética , Telômero/ultraestrutura
12.
Mol Cell ; 48(4): 532-46, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23084836

RESUMO

Complex genome organizations participate in various nuclear processes including transcription, DNA replication, and repair. However, the mechanisms that generate and regulate these functional genome structures remain largely unknown. Here, we describe how the Ku heterodimer complex, which functions in nonhomologous end joining, mediates clustering of long terminal repeat retrotransposons at centromeres in fission yeast. We demonstrate that the CENP-B subunit, Abp1, functions as a recruiter of the Ku complex, which in turn loads the genome-organizing machinery condensin to retrotransposons. Intriguingly, histone H3 lysine 56 (H3K56) acetylation, which functions in DNA replication and repair, interferes with Ku localization at retrotransposons without disrupting Abp1 localization and, as a consequence, dissociates condensin from retrotransposons. This dissociation releases condensin-mediated genomic associations during S phase and upon DNA damage. ATR (ATM- and Rad3-related) kinase mediates the DNA damage response of condensin-mediated genome organization. Our study describes a function of H3K56 acetylation that neutralizes condensin-mediated genome organization.


Assuntos
Adenosina Trifosfatases/metabolismo , Ciclo Celular , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Genoma , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Complexos Multiproteicos/metabolismo , Acetilação , Adenosina Trifosfatases/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas dos Microfilamentos/metabolismo , Complexos Multiproteicos/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mol Biol Cell ; 21(2): 254-65, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19910488

RESUMO

The eukaryotic genome is a complex three-dimensional entity residing in the nucleus. We present evidence that Pol III-transcribed genes such as tRNA and 5S rRNA genes can localize to centromeres and contribute to a global genome organization. Furthermore, we find that ectopic insertion of Pol III genes into a non-Pol III gene locus results in the centromeric localization of the locus. We show that the centromeric localization of Pol III genes is mediated by condensin, which interacts with the Pol III transcription machinery, and that transcription levels of the Pol III genes are negatively correlated with the centromeric localization of Pol III genes. This centromeric localization of Pol III genes initially observed in interphase becomes prominent during mitosis, when chromosomes are condensed. Remarkably, defective mitotic chromosome condensation by a condensin mutation, cut3-477, which reduces the centromeric localization of Pol III genes, is suppressed by a mutation in the sfc3 gene encoding the Pol III transcription factor TFIIIC subunit, sfc3-1. The sfc3-1 mutation promotes the centromeric localization of Pol III genes. Our study suggests there are functional links between the process of the centromeric localization of dispersed Pol III genes, their transcription, and the assembly of condensed mitotic chromosomes.


Assuntos
Centrômero/enzimologia , Centrômero/genética , DNA Polimerase III/genética , Genes Fúngicos/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/genética , Interfase , Mitose , Complexos Multiproteicos/genética , Mutação/genética , Ligação Proteica , Transporte Proteico , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA